CFP last date
20 May 2024
Reseach Article

Role of Software Engineering in Visualizing Large Volume of Hyperspectral and Medical Data Sets

by Basaeir Y. Ahmed, Safa A. Najim, Widad A. Mansour
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 176 - Number 9
Year of Publication: 2017
Authors: Basaeir Y. Ahmed, Safa A. Najim, Widad A. Mansour

Basaeir Y. Ahmed, Safa A. Najim, Widad A. Mansour . Role of Software Engineering in Visualizing Large Volume of Hyperspectral and Medical Data Sets. International Journal of Computer Applications. 176, 9 ( Oct 2017), 1-5. DOI=10.5120/ijca2017915580

@article{ 10.5120/ijca2017915580,
author = { Basaeir Y. Ahmed, Safa A. Najim, Widad A. Mansour },
title = { Role of Software Engineering in Visualizing Large Volume of Hyperspectral and Medical Data Sets },
journal = { International Journal of Computer Applications },
issue_date = { Oct 2017 },
volume = { 176 },
number = { 9 },
month = { Oct },
year = { 2017 },
issn = { 0975-8887 },
pages = { 1-5 },
numpages = {9},
url = { },
doi = { 10.5120/ijca2017915580 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
%0 Journal Article
%1 2024-02-07T00:42:03.066933+05:30
%A Basaeir Y. Ahmed
%A Safa A. Najim
%A Widad A. Mansour
%T Role of Software Engineering in Visualizing Large Volume of Hyperspectral and Medical Data Sets
%J International Journal of Computer Applications
%@ 0975-8887
%V 176
%N 9
%P 1-5
%D 2017
%I Foundation of Computer Science (FCS), NY, USA

The software engineering is a domain who cares for the production of the software development with high quality in response to the requirements of the market and delivered on time. This paper will discuss the software engineering, in their applications, and software development to deal with big data, as hyperspectral and medical imagery data sets. The role of the software visualization in the interpretation of the data, where the results will be presented to the user’s clearly and beautiful. A color space is a method to specify, create and visualize color. There are several types of systems colors for example RGB, CIE XYZ, HSV and HSI. Color mapping has an important role in the process of the visualization to understand data.

  1. A. Abran and J.W. Moore. Guide to the Software Engineering Body of Knowledge. United States of America, 2004.
  2. L. Wang D. Liu and J.A. Benediktsson. An interactive color visualization method with multi-image fusion for hyperspectral imagery. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pages 1088–1091, 2015.
  3. A. Bezerianos E. Dimara and P. Dragicevic. The attraction effect in information visualization. IEEE. Transactions on Visualization and Computer Graphics, 23(1):471–480, 2017.
  4. Samuel Gerber, Tolga Tasdizen, P. Thomas Fletcher, Sarang Joshi, Ross Whitaker, and the Alzheimers Disease Neuroimaging Initiative (ADNI). Manifold modeling for brain population analysis. Medical Image Analysis, 14:643–653, 2010.
  5. Patric Hagmann, Lisa Jonasson, Philippe Maeder, Jean philippe Thiran, Van J.Wedeen, and Reto Meuli. Understanding diffusion mr imaging techniques: From scalar diffusionweighted imaging to diffusion tensor imaging and beyond. Radio Graphic, 26:205–223, 2006.
  6. Ghassan Hamarneh, Senior Member, Chris McIntosh, and Mark S. Drew. Perception-based visualization of manifoldvalued medical images using distance-preserving dimensionality reduction. IEEE Transactions on Medical Imaging., 30:1314–1327, 2011.
  7. Jihun Hamma, Dong Hye Ye, Ragini Verma, and Christos Davatziko. Gram: A framework for geodesic registration on anatomical manifolds. Medical Image Analysis, 14:633–642, 2010. Zhanli Hu, Jing Zou, Jianbao Gui, Junyan Rong, Yanming Li, Dongxing Xi, and Hairong Zheng. Real-time visualization and interaction of threedimensional human ct images. Computers, 5:1335–1342, 2010.
  8. B. Hollein J. Al-Jaroodi and N. Mohamed. Applying software engineering processes for big data analytics applications development. In Computing and Communication Workshop and Conference (CCWC), 2017 IEEE 7th Annual, Las Vegas, NV, USA, 2017.
  9. M. Kamber J. Han and J. Pei. Data Mining Concepts and Techniques. 2012.
  10. M. Kazhdan D.Lepage J. Lawrence, S.Arietta and C. OHagan. A user-assisted approach to visualizing multidimensional images. IEEE Transactions On Visualization And Computer Graphics, 17(10):1487–1498, 2011.
  11. G. Camp s-Valls P. Scheunders Nr M. Nasrabadi J. M. Bioucas-Dias, A. Plaza and Jocelyn Chanussot. Hyperspectral remote sensing data analysis and future challenges. IEEE Geoscience and remote sensing magazine, 1(2):6–36, 2013.
  12. G. C. Huurneman K. Tempfli, N. Kerle and L. L. F. Janssen. Principles of remote sensing. In The International Institute for Geo-Information Science and Earth Observation (ITC), Netherland, 2009.
  13. S. Kaski and J. Peltonen. Dimensionality reduction for data visualization. IEEE Signal Processing Magazine, 28(2):100– 104, 2011.
  14. Ketan Kotwal and Subhasis Chaudhuri. Visualization of hyperspectral images using bilateral filtering. IEEE Transaction on Geoscience and Remote Sensing, 48, 2010.
  15. G. Wang L. Wang and C. A. Alexander. Big data and visualization: Methods, challenges and technology progress. Digital Technologies, 1(4):33–38, 2015.
  16. J. Hu M. Cui, A. Razdan and P. Wonka. Interactive hyperspectral image visualization using convex optimization. IEEE Transactions On Geoscience And Remote Sensing, 47(6):1673–1684, 2009.
  17. K. Ma and S. Parker. Massively parallel software rendering for visualizing large scale data sets. IEEE Computer Graphics and Applications, 21(4):72–83, 2001.
  18. N. M. Munassar and A. Govardhan. A comparison between five models of software engineering. IJCSI International Journal of Computer Science Issues, 7(5):94–101, 2010.
  19. Safa A. Najim. Information visualization by dimensionality reduction: a review. Journal of Advanced Computer Science and Technology, 3(2):101–112, 2014.
  20. Safa A Najim, Ik S Lim, P Wittek, and M Jones. Fspe: Visualization of hyperspectral imagery using faithful stochastic proximity embedding. IEEE Geoscience And Remote Sensing Letters, 12(1):18–22, 2015.
  21. Safa A. Najim and Ik Soo Lim. Trustworthy dimension reduction for visualization different data sets. Inormation Science, 278:206–220, 2014.
  22. Safa A. Najim and Widad A. Mansour. Hybrid visualization of the medical images data sets. International Journal of Computer Application, 136(8), 2016.
  23. Safa A. Najim, Alaa A. Najim, IS Lim, and M Saeed. Parallel faithful dimensionality reduction to enhance the visualization of remote sensing imagery. Neurocomputing, 168:560–565, 2015.
  24. F. T. Marchese O. C.Z. Gotel and S. J. Morris. The potential for synergy between information visualization and software en-gineering visualization. In 12th International Conference Information Visualization IEEE, London, UK, 2008.
  25. Aljabar P., Wolz R., Srinivasan L., Counsell S. J., Rutherford M. A., Edwards A. D., Hajnal J. V., and Rueckert D. A combined manifold learning analysis of shape and appearance to characterize neonatal brain development. IEEE Transaction on Medical Imaging, 30:2072–2086, 2011.
  26. S. Cai Q. Du, N. Raksuntorn and R. J. Moorhead. Color display for hyperspectral imagery. IEEE Transactions On Geoscience And Remote Sensing, 46(6):1858–1866, 2008.
  27. F Mao S Grainger and W Buytaert. Environmental data visualisation for non-scientific contexts: Literature review and design framewo. Environmental Modelling & Software, 85:299– 318, 2016.
  28. Ian Sommervill. Software Engineering. Addison-Wesley, 2011.
  29. Richard Souvenir and Robert Pless. Image distance functions for manifold learning. Image and Vision Computing, 25:365– 373, 2007.
  30. Adam Switonski, Marcin Michalak, Henryk Josinski, and Konrad Wojciechowski. Detection of tumor tissue based on the multispectral imaging. In Computer Vision and Graphics, Lecture Notes in Computer Science, Part 2, of Springer, 6375:325–333, 2010.
  31. A. C. Telea. Data Visualization Principles and Practice. CRC Press, 2015.
  32. C. Ware. information visualization perception for design. Elsevier Inc, 2004.
  33. Chris M. Clark Yong Fan, Nematollah Batmanghelich and Christos Davatzikos. Spatial patterns of brain atrophy in mci patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. NeuroImage, 39:1731–1743, 2008.
  34. Xin Zhao and Arie E Kaufman. Multi-dimensional reduction and transfer function design using parallel coordinates. In Volume Graphics, 2010.
Index Terms

Computer Science
Information Sciences


Computer Science Software Engineering Information Visualization Medical Imagery